LECTURE NOTES ON BINOMIAL THEOREM

By

Mritunjay Kumar Singh¹

Abstract

In this lecture note, we give detailed explanation and set of problems related to Binomial theorem for negative index.

Topic Covered: Binomial theorem for negative index, Approximate value (only formula)

1. Binomial Theorem for Negative Index

Theorem 1. If n is a negative integer and x is a real number with |x| < 1, then

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)(n-2)\cdots(n-r+1)}{r!}x^r + \dots$$

1.1. Remarks

• The above statement also holds for positive integers. Thus, for a positive integer n, we have

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots + \frac{n(n-1)(n-2)\cdots 3\cdot 2\cdot 1}{n!}x^{n}.$$

• The general term in above expansion is

$$T_{r+1} = \frac{n(n-1)(n-2)\cdots(n-r+1)}{r!}x^r$$

• In the expansion like $(a+x)^n$, the first term should be made unity.

 $^{^{1}\}mathrm{Lecturer}$ in Mathematics, Government Polytechnic, Gaya, Bihar, India, Mobile : 9546595789

1.2. Particular Cases

• Replacing n by -n and simplifying, we get

$$(1+x)^{-n} = 1 - nx + \frac{n(n+1)}{2!}x^2 - \dots + (-1)^{r-1}\frac{n(n-1)(n-2)\cdots(n-r+1)}{r!}x^r + \dots$$

• Replacing x by -x and simplifying, we get

$$(1-x)^{n} = 1 - nx + \frac{n(n-1)}{2!}x^{2} - \dots + (-1)^{r}\frac{n(n-1)(n-2)\cdots(n-r+1)}{r!}x^{r} + \dots$$

• Replacing n by -n and replacing x by -x and simplifying, we get

$$(1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!}x^2 + \dots + \frac{n(n+1)(n+2)\cdots(n+r-1)}{r!}x^r + \dots$$

Example 1. Expand $(1 - 2x^{-1})$ up to 5 terms.

Solution 2. By applying the Binomial theorem for negative index, we have

$$(1-2x)^{-1} = 1 + (2x) + (2x)^2 + (2x)^3 + (2x)^4 + \cdots$$

= 1 + 2x + 4x² + 8x³ + 16x⁴ (up to 5 terms)

Example 2. Find the coefficient of x^3 in the expansion of $\frac{(1+3x)^2}{1-2x}$.

Solution 3. We have,

$$\frac{(1+3x)^2}{1-2x} = (1+3x)^2(1-2x)^{-1}$$
$$= (1+6x+9x^2)(1+2x+4x^2+8x^3+\cdots).$$

Hence, the coefficient of x^3

$$= (1)(8) + (6)(4) + (9)(2)$$

= 8 + 24 + 18
= 50.

Exercise 1. Find the coefficient of x^7 in the expansion of $(x - 2x^2)^3$.

Exercise 2. Find the negative value of n, if the coefficient of x^2 in the expansion of $(1 + x)^m$ is 6.

Exercise 3. Find the coefficient of x^n in the expansion of $\frac{(1+x)^2}{(1-x)^3}$. Also find the coefficients of x^5 and x^7 .

2. Approximate Value

Approximating powers of numbers by using Binomial theorem is called approximate value. The reason behind this fact is that if x is sufficiently small then x^2 and higher powers of x can be neglected and as a result, we get approximate value up to two terms

$$(1+x)^n \approx 1 + nx.$$

Similarly, in the same fashion, the approximate value up to three terms

$$(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2.$$

Example 3. Indicate which is larger by using Binomial theorem

 $(1.1)^{10000}$ or 1000.

Solution 4. Using Binomial theorem, we have

$$(1.1)^{10000} = (1+0.1)^{1000}$$

= $1 + {\binom{10000}{1}}(1)^{9999}(0.1) + \text{other positive terms.}$
= $1 + 10000 \ (0.1) + \text{other positive terms}$
= $1 + 1000 + \text{other positive terms.}$

Thus, $(1.1)^{10000} > 1000$.

Exercise 4. Indicate which is larger by using Binomial theorem

 $(1.2)^{4000}$ or 800.

Exercise 5. Using Binomial theorem, evaluate each of the following:

- $1. \ 99^5$
- 2. 101^4
- 3. 96^3

Exercise 6. Find cube root of 998 correct up to 5 decimal places.

***The End ***